
 CHAPTER 2. 
LITERATURE REVIEW AND THEORETICAL BACKGROUND 

 
2.1. Bedforms 

 

Much research has been done in the past on the mechanics and prediction of bedforms.  

The physical processes underlying bedform mechanics is complex.  Karim (1999) lists 

among the factors leading to this complexity as 1) a large number of governing variables 

and their interaction; 2) the 3-dimensional nature of bedforms and their development; 3) 

lags in the development of bedform adjustment in response to changes in the structure of 

the flow; and 4) problems with measuring bedform dimensions in the field.  Among the 

earliest analytic treatments of bedforms is that of DuBuat (1786) as mentioned by Graf 

(1971).  Dubuat described the bedform as being triangular in shape and slowly 

advancing.  The bedform advancement was caused by the individual grains moving up 

the gentle slope, arriving at the summit only to fall rapidly down the steep slope, and 

finally being sheltered from the flow in the trough between successive bedforms.   

 

An extensive set of laboratory studies of bedforms were conducted and compiled by the 

U.S. Geological Survey at Colorado State University in the 1950’s and 1960’s.  These 

data, summarized in Guy and others (1966), are the impetus for a classification system 

for bedforms developed by Simons and others (1965A) and presented as table 2.1, with 

each type of bedform illustrated in figure 2.1.   Simons and others (1961) also suggested 

classifying the bedforms using the Froude number (Fr) (equation 1.9) However, it was 

recognized that this was not an absolute classification but rather qualitative as Simons 

and others point out that a particular bedform occurred in the laboratory flume at Fr < 0.6 
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but in a large deep river at Fr < 0.3.  This result possibly is indicative of the variable 

nature of the Froude number across a stream and the contrast between local Froude 

number with reach-averaged Froude number, along with scale effects.  

 

 
Flow regime Bedform Bed material  

concentrations, 
ppm 

Mode of 
sediment 
transport 

Type of 
roughness  

Roughness, 

g
C  

Lower regime Ripples 
Ripples on 

dunes 
Dunes 

10-200 
100-1,200 

 
200-2,000 

Discrete steps Form 
roughness 

predominates 

7.8-12.4 
-- 
 

7.0-13.2 
Transition Washed-out 

dunes 
1,000-3,000  Variable 7.0-20.0 

Upper regime Plane beds 
Antidunes 
Chutes and 

pools 

2,000-6,000 
2,000  
2,000  

 
Continuous 

Grain 
roughness 

predominates 

16.3-20 
10.8-20 
9.4-10.7 

 

Table 2.1—Classification of bedforms and other information (adapted from Graf, 1971) 
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Figure 2.1.—Forms of bed roughness in an alluvial channel (from Simons and 
Richardson, 1966) 

 

The American Society of Civil Engineers (ASCE) (1966) summary report from the task 

force on bedforms provides descriptions and definitions of the various types of bedforms.  

Vanoni (1975) presented a table that contained the more salient points of the ASCE task 

force report and is reproduced as table 2.2.  This table is similar to that produced by  

Simons and others (1961). 

 

 

  18



 

 

Table 2.2—Summary description of bedforms and configurations (from Vanoni, 1975 
and ASCE,1966) 

 

 

Lower-flow and transitional-flow regimes are of interest in this study as the large alluvial 

rivers of interest in this study are wide with low Froude (Fr) numbers and the bedforms 

of interest have lengths that scale with the flow depth.  Thus, flat bed, ripples, and dunes 
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will be the primary bedforms present and of interest.  Furthermore, as van Rijn (1984C) 

states, low flow and transitional flow regimes are the most important for field conditions.  

Yalin and da Silva (2001) characterize those large-scale bedforms, where lengths scale 

with the flow depth as dunes, whereas those bedforms whose lengths are proportional to 

flow width are termed bars.   

 

Ripples and dunes are skewed in shape (in side view) and flow over them produces 

eddies in their lees (Haque and Mahmood, 1985). Exner (1925) provided the first modern 

analysis of bedforms by using perturbation stability theory on the equations of fluid 

motion, fluid continuity, and sediment continuity, including a sediment-transport relation 

for closure (Kennedy and Odgaard, 1991).   This analysis demonstrated how a symmetric 

bedform evolves into a non-symmetrical, skewed feature as often found on the bed of 

rivers.  Ripples and dunes have different geometric scales, with the ripple height being 

smaller than that of dunes and substantially smaller and independent of the flow depth.  

Ripple length is dependent on sediment size and independent of the flow depth (Engelund 

and Fredsoe, 1982).  The dune height is highly dependent on the flow depth and the dune 

length is much larger than (but proportional to) the flow depth (van Rijn, 1984C).   

Whereas dunes and ripples are different in the above-mentioned ways, their geometries 

are similar  (Haque and Mahmood, 1985).  Both dunes and ripples have a gentle, slightly 

convex-to-the-flow, slope to the stoss (upstream) face, with a downstream face that is 

steep and slightly less than the angle of repose of the sand (see figure 2.2) 
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Hd 

 

 

Figure 2.2.—Conceptual drawing of dunes (from Simons and others, 1965) 
 

Kennedy and Odgaard (1991) provide an excellent review of some of the principal 

bedform studies since 1925 and group the studies into three categories: 1) analytical 

models (predominantly of stability theory) (Exner, 1925; Anderson, 1953; Kennedy, 

1963; Kennedy, 1969; Hayashi, 1970; Engelund, 1970; Gill, 1971; Fredsoe, 1974; 

Richards, 1980; Fredsoe, 1982; and Haque and Mahmood, 1985),  2) empirical relations 

(Garde and Anderson, 1959; Yalin, 1964; Ranga Raju and Soni, 1976; Yalin and 

Karahan, 1979; Jaeggi, 1984; Ikeda, 1984; van Rijn, 1984C; and Menduni and Paris, 

1986), and 3) statistical analysis (Nordin and Algert, 1966; Hino, 1968; Annambhotla, 

Sayre and Livesay, 1972; and Jain and Kennedy, 1974).  The main issues of interest in 

this review are: 1) origin of bedforms and 2) predicting their type and geometry.  As 

such, this review is divided accordingly, with a sub-grouping similar to that of Kennedy 

and Odgaard (1991) when prediction of geometry is discussed.       
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2.1.1 Origin of Bedforms 
 

As discussed previously, various bedforms have been associated with various flow 

regimes.  A typical progression of bedforms for a sand-bed stream was listed by Garcia 

(1999) as follows:   

 

“The bed is assumed to be initially flat.  At low imposed velocity U, the bed 

remains flat because no sediment is moved.  As the velocity exceeds the critical 

value, ripples are formed first.  At higher values, dunes form and coexist with 

ripples.  For even higher velocities, well-developed dunes form in the absence of 

ripples.  

 

At some point, the velocity reaches a value near the critical value in the Froude 

sense.  Near this point, the dunes often are suddenly and dramatically washed 

out.  This results in a flat bed known as an upper-regime (supercritical) flat bed.  

……… 

 

In the case of a bed coarser than 0.5 mm, the ripple regime is replaced by a zone 

characterized by a lower-regime (subcritical) flat bed.  Above this lie the ranges 

for dunes, the upper-regime flat bed, and antidunes.” 

 

Until recent experiments by Coleman and Eling (2000) showed that bedforms could 

develop in laminar flow, theories developed for bedforms were thought to apply for fully 
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turbulent flow (Yalin, 1977A).   According to Yalin and da Silva (2001), citing work of 

Matthes (1947), Velikanov (1955), Kondratiev and others (1959) and Grishanin (1979) , 

many prominent researchers have long maintained that large-scale bedforms (dunes) are 

caused by large-scale turbulence. Kennedy and Odgaard (1991) cite that the instability 

that produces ripples and dunes is similar to that which causes turbulence and that any 

disturbance rapidly amplifies to the extent that equilibrium turbulence or bedforms soon 

emerge.  Internal non-uniformities of the flow, caused by turbulent bursts, result in the 

initially flat mobile bed transforming into a bed covered with dunes (Yalin and da Silva, 

2001).  These bursting processes from a deterministic sense are described in figure 2.3 

(Yalin and da Silva, 2001, p. 26) (in other words, the process as shown in the figure has 

the random element which is typical of turbulence removed for ease of illustration).  The 

bursting process is the evolution of large macroturbulent eddies (Yalin and da Silva, 

2001), which begin as small eddies in the areas of large shear stresses near the bed.  The 

small eddies develop as a result of the excessive fluctuation in shear stresses.  Once 

mobilized, these small eddies are conveyed by the flow downstream, while 

simultaneously moving away from the boundary, and diffusing and coalescing to become 

larger and fewer.  These burst-forming eddies grow to scale with the flow depth and at 

that point they impinge on the bed, causing the large eddy to break apart, entrain 

sediment, and form new small eddies that then repeat the same cycle.  Yalin and da Silva 

(2001) report that ripples are prominent when the flow is hydraulically smooth with a 

viscous layer near the bed.   It is reported that ripple geometry is not dependent on the 

overall flow dimensions and, therefore, unlikely that ripples are affected by the bursting 

process, with the viscous region “shielding” the bed from the action of the bursts (Yalin 
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and da Silva, 2001).  According to van Rijn (1984C), the generation of ripples appears to 

be dependent on the stability of the granular surface under the action of turbulent velocity 

fluctuations; however, this result would seem to be in contradiction to the notion of 

development of these ripples in a viscous (or laminar) sublayer environment.   
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EXPLANATION 
eV= “burst-forming” vertical eddies 
eH= “burst-forming” horizontal eddies 
EV=large scale vertical eddies 
EH=large scale horizontal eddies 
h=flow depth 
B=width 
LV=vertical burst length 
LH=horizontal burst length 
Λd=dune length 
Prime symbol designates new eddies 

Figure 2.3.—Evolution of eddies (from Yalin and da Silva, 2001) 
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These conceptual understandings of the effects of turbulence on the formation of 

bedforms are now in question because of the findings of Coleman and Eling (2000). 

Coleman and Melville (1996) introduce the term sand wavelets (smaller than ripples) to 

describe the instability induced “nascent” bedforms that are precursors to the 

development of ripples and dunes.  These sand wavelets are said to begin from random 

sand pileups, which also was noted in the experiments of Williams and Kemp (1971). 

Coleman and Melville (1994) note that the process of bedform generation from flat bed 

conditions is the result of sand-water interface instability (as opposed to turbulence?).   

Coleman and Eling (2000) note that these waves appear to not be a consequence of 

turbulence but rather generated by a form of shear layer instability or instability of the 

motion of the granular mass moving over the otherwise flat sediment bed.  Ripples and 

dunes are the result of the same type of wavelets, with the difference in bedform 

dependent on different flow  instability mechanisms at subsequent development stages to 

provide either ripples or dunes (Coleman and Melville, 1996).  

 

In the classic analysis by Exner (detailed in Leliavsky, 1955 (see Nelson and others, 

1993)) , an initially symmetric incipient bedform will tend to become asymmetrical as the 

bedform grows and migrates.  Flow separation occurs at the crest of each bedform, with a 

reattachment point somewhere on the stoss face of the next downstream bedform.  A 

schematic depiction of the typical flow field over a bedform is shown in figure 1.1 (from 

Nelson and others, 1993).  The shaded portion is the typical wake-like flow structure, 

however, this region also has the effect of the topographically induced acceleration of 
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flow and the presence of the bed.   Beneath this wake region is where the internal 

boundary layer is growing downstream of the reattachment point.   

 

When dunes are fully developed, regions of increased and decreased bed-shear stress are 

present, resulting in regions of scour and deposition.  If stage continues to increase, 

sediment particles from the bed will go into suspension according to the ration between 

the grain shear stress and the particle fall velocity. This process will result in washed-out 

dunes (or transition regime) (van Rijn, 1984C).  The observations of Jordan (1965) and 

the data of Shen and others (1978) indicate that for flows with large depths, the 

transitional bedforms (washed out dunes) maintain their height but are longer, which is 

not observed in flume-scale data (Bennett, 1995).  Amsler and Garcia (1997) cite that 

large dunes on the Parana River decreased in magnitude with increasing discharge, 

however, the superimposed dunes increased in size.    

 

2.1.2  Prediction of Bedform Type and Geometry 
 

 

Fully understanding bedforms and their prediction is difficult because the bedforms, and, 

thus, hydraulic form roughness, are dependent on flow conditions and sediment transport. 

In turn, these flow conditions are highly dependent on the channel-bed configuration and 

its form roughness (van Rijn, 1984C).  Prediction of the type and dimension of bedforms 

are of great interest to investigators. There are numerous investigators who have 

proposed relations to predict the dimensions of the bedforms.   The dimensions of interest 

are the amplitude or bedform height (Hd) and the bedform length (λ).  In some of the 
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literature, bedform steepness is referred to as the bedform height divided by the bedform 

length (Hd/λ).  As this research is limited to the lower regime, the discussion will be 

limited to that of the lower flow regime relations (dunes and ripples).   

 

 

2.1.2.1  Prediction of Bedform Type 

 

A large number of methods have been proposed to identify the bedform type.  One of the 

earliest attempts at classification was that of Forchheimer (1930), who suggested that the 

Froude number (Fr) served as a good criterion to separate the occurrence of antidunes 

(Fr>1) with the occurrence of dunes (Fr<1).  Most of the methods involve graphs with 

observed data (mostly from laboratory analysis (Raudkivi, 1990)) whereby certain 

classification zones are identified for various types of bedforms.   

 

Simons and Richardson (1966) present a method, that unlike many of the other methods, 

which use dimensionless parameters in the graph, uses a dimensional plot of streampower 

(Bagnold, 1960) ( product of the bed shear stress and the mean velocity) versus the 

median grain size (figure 2.4).  Vanoni (1975) points out that whereas the data from the 

Rio Grande reported in Nordin (1964) agree well with the Simons and Richardson graph, 

the data collected by Jordan (1965) on the Mississippi River, with similar velocities but 

depths as much as 10 times greater than the Rio Grande, would indicate plane bed 

conditions on the graph when clearly dunes were present.  Shen and others (1978) also 

report that their data from the Missouri River does not agree with this graph.   This 
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disagreement would seem to indicate that failure to non-dimensionalize the graph has 

introduced scale effects into the procedure, as the graph was constructed from laboratory 

data and field data from the Elkhorn River near Waterloo Nebraska; Rio Grande above El 

Paso Texas; Middle Loup River at Dunning, Nebraska; Rio Grande at Cochiti, New 

Mexico; Rio Grande near Bernalillo, New Mexico; Rio Grande at Angostura, New 

Mexico; Punjab Canal data; and assorted canal data from Harza Engineering.  All these 

rivers have shallower depths than that of the Mississippi and Missouri Rivers.    

 

 

Figure 2.4.—Bedform predictor from Simons and Richardson (1966)  
 

 

Liu (1957) uses dimensionless shear velocity and shear velocity Reynolds number to 

delineate the zones (figure 2.5).  According to Simons and Senturk (1977), the diagram of 
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Liu (1957) does not give acceptable results for field conditions because few field data 

were used in the analysis.   

 

 

 
 
 
 
 
 

EXPLANATION 
u*=shear velocity 
w=sediment particle fall velocity 
d=sediment size 
υ=kinematic viscosity 
 

Figure 2.5.---Bedform predictor from Liu (1957) 
 

Kennedy (1969) presents a graph (figure 2.6) based on his two-dimensional potential 

flow model and experimental data that characterize the bedform based on a relation 

between the Froude number and  j, which is the ratio between the lag distance, δ, and the 

depth of flow, H.  The lag distance is a phase shift between the local sediment transport 

rate and the local mean velocity.   
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EXPLANATION 
Fr = Froude number 
λ  = wavelength of bedform 
j = δ/y0
y0 = flow depth 
δ = lag distance of the local sediment transport rate and the local velocity 
 
 

igure 2.6.—Bedform predictor developed by Kennedy (1969) based on potential flow 
model  

ameskaya (1969) proposed a plot of Froude number versus dimensionless mean 

ocity (figure 2.7).  Hill and others (1967) plot the shear velocity Reynolds number 

h a dimensionless grain size (figure 2.8). Vanoni (1974) has a set of graphs (subset 

wn in figure 2.9) that he used to discriminate among bedforms, with each graph using 

 Froude number and a dimensionless grain size as the parameters, and the selection of 

 graph to use being dependent on the grain size median diameter and a dimensionless 

ameter defined as 

ν
DgD

Rg =    , [2.1] 
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where g is the acceleration of gravity, D is the grain size, and ν is the kinematic viscosity.   

van Rijn (1984C) used a dimensionless grain size (D*=Rep
2/3) and plotted it against a  

transport stage parameter, T (figure 2.10), as 

2
*

2
*

2
*

cr

cr

u
uu

T
−′

=        , [2.2]  

where u’* is the grain shear velocity and u*cr is the critical shear velocity as determined 

from Shields  diagram (van Rijn, 1984A).     

 

Karim (1995) developed bedform regime predictors in the form of limiting Froude 

numbers, defined as 

 

25.0

50

716.2
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

D
HFt   , 

27.0

50

785.4
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

D
HFu    , [2.3] 

where Ft is the beginning of the transition regime (from the lower-flow regime), and Fu is 

the beginning of the upper regime.  Based on these definitions for limiting Froude 

numbers, the bedform geometry type can be determined as the following. 

 

Lower regime (ripples, dunes) 

Fr ≤ Ft 

 

Transition regime (washed out dunes) 

Ft ≤ Fr ≤ Fu  
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Upper regime (plane bed, antidunes) 

Fr ≥ Fu

 

Karim (1995) also used Fr≥0.8 as a predictor for antidunes.  

 

Fr 

U/w 
 

Figure 2.7.—Bedform predictor p

 

 
 
 
 
 
 

EXPLANATION 
Fr=Froude Number 
U=mean velocity 
w=fall velocity of sediment 
h = dune height 
λ=dune wavelength 
c=dune translation velocity
 
roposed by Znamenskaya (1969) (from Raudkivi, 1990) 
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Figure 2.8.--- Bedform predictor proposed by Hill and others (1967) (from Raudkivi, 
1990) 
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EXPLANATION 
H = flow depth 
D50 = median grain size 
Fr = Froude number 

 

Figure 2.9.—Froude number versus H/D50 with indications of the type of bedform 
present for sands (from Vanoni, 1974)  
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Figure 2.10.—Bedform classification proposed by van Rijn (1984C) 
 

Ripples are reported to occur for hydraulically smooth conditions (Yalin and da Silva, 

2001) which requires a viscous (or laminar) sublayer.  Rouse (1957) defines the height of 

the viscous sublayer, δv,  as 

*

6.11
uv
νδ =     . [2.4] 

From this definition of viscous sublayer, Garcia (1999) reports the criteria for the 

presence of ripples as 

6.11* ≤
ν
Du    , [2.5] 
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where D is the diameter of the grains.  Raudkivi (1990) reports that ripples only develop 

in fine grained sediments (D<0.7 to 0.9 mm) and at shear velocity Reynold’s numbers 

( ν
Du*

*Re = ) less than 22 to 27, whereas Richards (1980) gave the following criteria for 

ripple formation 

 

0.0007 < kz0 < 0.16    , 

 

where k is the wave number (2π/λ) and z0 is the roughness length parameter defined as 

n
s

c k
g

z −
−
−

=
)(

3.26 0
0 ρρ

ττ   , [2.6] 

with kn the Nikuradse roughness height.  Karim (1999) developed a relation for 

predicting ripples from laboratory data reported by Guy and others (1966).  He found that 

ripples would only occur if  

 

N* < 80     , [2.7] 

 

where 
50

50*
* gRD

UDuN
ν

= , where D50 is the median grain size .  Finally, Raudkivi 

(1997) provides a relation for the occurrence of ripples based on the shear Reynolds 

number, Re* (referred to as the boundary Reynolds number by Karim, 1999), where in 

order for ripples to occur, Re*=10 to 20, where  

ν
50*

*Re
Du

=        . [2.8] 
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In much of this discussion so far, little attention has been paid to the effect of water 

temperature on the type of bedform, although in some cases, this effect is accounted for 

in the kinematic viscosity in the Reynolds number. Many investigators have noted the 

effect of water temperature on the alluvial bed resistance, which has been used as an 

indicator of the type of bedform present (Colby and Scott, 1965, p 12), and sediment 

transport rate (Straub and others, 1958; Colby, 1964; Burke, 1966; Toffaleti, 1968; and 

Shen and others, 1978).   A few degrees change in temperature can cause the bed 

configuration to change between flat bed and dune-ripples regime (Vanoni, 1974).  Water 

temperature affects the fluid viscosity, which, in turn, affects the fall velocities of the 

sediment particles.  This affects the mobility of the sediment particles that control the 

bedform features (Vanoni, 1974).  Investigation into the precise effect of water 

temperature on sediment transport has conflicting conclusions, with Hubbell and Al-

Shaikh Ali (1961) concluding that increasing water temperatures either could increase or 

decrease sediment transport rate.   The U.S. Army Corps of Engineers noted a change of 

bedform with temperature at constant discharges on the Missouri River (U.S. Army 

Corps of Engineers 1967, 1968, and 1969).  In a follow-up study, Shen and others (1978) 

demonstrated that the curves of Vanoni (1974) are reasonable at  picking up this 

temperature effect for data from the Missouri River.   
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2.1.2.2 Empirical Predictors of Bedform Geometry 

 

Empirical investigations nearly always start from dimensional analysis to determine the 

important dimensionless parameters affecting bedform geometry, and proceed to using 

graphical and multiple regression techniques to determine relations between the bedform 

geometry and the dimensionless variables.  Among the independent parameters, which 

are made non-dimensional in the analysis, are flow depth (H),  Shields stress (or non-

dimensional bed shear stress, 
RgDρ
ττ =* ), grain size (D), water viscosity (ν),  

submerged specific gravity (
ρ
ρρ −

= sR ),    and bed porosity (p).   

 

Yalin (1977A), in an empirical investigation, presents the following expressions that 

characterize the dimensional analysis of the bedform geometry problem 

 

⎥⎦
⎤

⎢⎣
⎡=
υ

λ Du
f

D
* , for ripples,  [2.9] 

 

⎥⎦
⎤

⎢⎣
⎡=

D
HDu

f
H

,*

υ
λ ,  for dunes, [2.10] 

 

⎥
⎦

⎤
⎢
⎣
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cr

d f
H

τ
τ

λ
*  ,   for ripples, and  [2.11] 
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⎥
⎦

⎤
⎢
⎣

⎡
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D
HDuf

H

cr

d ,, **

υτ
τ

λ
, for dunes, [2.12] 

 

   

where 
υ
Du*  is the boundary Reynolds number (Re*) (also sometimes referred to as the 

particle Reynolds number).  Graf (1971, p. 283) contends that Yalin presented these in 

his original 1964 work by “making some experimentally unsupported assumption, (from 

which) dimensionless variables for height ( Hd) and length (λ) of bedforms were derived, 

and the functional relations were obtained from experimental data.” After many 

experiments, Yalin (1964) established that  

 

⎟
⎠
⎞

⎜
⎝
⎛ −=

H
H

H
H crd 1

6
1   , [2.13] 

and because Hcr (depth at which incipient motion takes place) cannot exceed H, it is 

obvious that Hd/H cannot exceed 1/6.  Garcia (1999) states this as 

 

6
1

<
H
H d     . [2.14] 

 

Nordin and Algert (1965) suggests that 1/3 should be used instead of 1/6, as the Rio 

Grande dune heights are closer to one-third the depth.     

 

For ripples, Yalin (1964) determined from extensive laboratory data that for ripples,  
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λ=1000D   . [2.15] 

 

Richards (1980) also indicated an independence of the ripple length from flow properties 

and surmised the following for ripple length 

 

203D<λ<4050D    . 

 

For wavelets (the precursors of ripples and dunes), Coleman and Eling (2000) give the 

following relation for their length in both laminar and turbulent flows (correcting the 

earlier formula of Coleman and Melville (1996) that was only valid for turbulent flow) as 

 

λ=175D 0.75   . [2.16] 

 

For dunes, Yalin (1964) showed that as Re* increases, the following applies,  

 

λ=2πH   . [2.17] 

 

This relation is similar to Hino (1968) who estimated the “prevailing dune length” as 

 

λ≈7H    .  

 

Allen (1970) suggested that for deep flows (H>10m) 
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λ=1.16H 1.55      . [2.18] 

 

For the steepness of dunes and ripples, Yalin (1977A) presents two graphs that plot Hd/λ 

versus ratio of the Shields stress and the critical Shields stress.  Dunes where Re*>31.62 

and H/D > 100 are illustrated in figure 2.11, whereas for ripples with Re*< 10 and 

H/D>400 are illustrated in figure 2.12.   

 

λ
dH

cr*

*

τ
τ

Re* > 31.62 
H/D > 100 
 

 

Figure 2.11—Prediction of dune steepness proposed by Yalin (1977A) 
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Figure 2.12---Prediction of ripple steepness proposed by Yalin (1977A) 
 

 

Fredsoe (1975) related dune steepness to shear stresses by suggesting the following 

equation  

 

2

*
*

4.006.01
4.8

1
⎥
⎦

⎤
⎢
⎣

⎡
−−= τ

τλ
dH   . [2.19] 

 

Van Rijn (1984C) gives relations for dune geometry that are some of the  most widely 

used and quoted in the literature.  Using 84 sets of data from flume experiments (size 

ranges from 0.19 to 2.3 mm) and 22 sets of river data (ranging in size from 0.49 to 3.6 

mm), van Rijn produced the following empirical equations 
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λ
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where T is the transport stage parameter given above.  Van Rijn makes the assumption 

that for T<0 and T>25, the bed surface almost is flat (he does not consider antidunes).  

The above relations with the data used to evaluate them are plotted in figures 2.13 and 

2.14.  From these equations, an expression for the bedform length can be derived as 

 

λ=7.3H   . [2.22] 

 

This equation is similar to Yalin’s (1964) expression of λ=2πH (equation 2.17). 
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Figure 2.13.—Bedform height predictor proposed by van Rijn (1984C) 
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Figure 2.14.---Bedform steepness predictor proposed by van Rijn (1984C) 

 

Julien and Klaassen (1995) analyzed a large amount of field and laboratory data and 

proposed the following relation 
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where ξ is the dune-height coefficient.  Julien and Klaasen report that the average value 

of ξ  is approximately 2.5 and that 95% of their data are reported to be within 0.8<ξ<8.   

The dune length is described by 
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HH dηλ   , [2.24] 

 

where η is a dune-length coefficient with a reported average value of approximately 2.5.  

Julien and Klaasen indicate that 95% of the data points are within 0.5<η<8.   When the 

above two equations are combined and average values for η and ξ are used,   Julien and 

Klaassen give a reasonable first approximation for dune wavelength as 

 

λ≈6.25H     . [2.25] 

 

Amsler and Garcia (1997) in a discussion of the work of Julien and Klaasen (1995) noted 

that Julien and Klaasen’s data indicated that the large dune heights increased with 

increasing discharge (shear stress), which was counter to what had been observed on the 

Parana River in Argentina.  Amsler and Garcia (1997) speculated that Julien and Klaasen 

mistakenly had lumped the small-superimposed dunes (Julien and Klaasen termed these 
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megaripples) onto the large dunes and, in reality, the large dunes actually decrease.  They 

further state that the predictors of large dunes cannot predict the characteristics of the 

small dunes (megaripples).   

 

 

 

2.1.2.3 Analytic Predictors of Bedform Geometry 

 

Another class of bedform investigation is that of analytical or theoretical models. Most of 

these models have used linear-stability analysis to determine the stability of small-

amplitude sinusoidal bed features.   Among the first investigations of this type and best 

known is that of Kennedy (1963, 1969) who developed an analytical model of potential 

flow over a wavy bed surface. 

 

Kennedy (1963), using a potential flow formulation of free-surface flow over a sinusoidal 

bed, derived the following equation to determine the wavelength of the dune 
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where Fr is the Froude number, k is the wave number (2π/λ), λ is the wavelength, and δ is 

the phase shift between the local sediment discharge and local near-bed velocity.   The 

phase shift is the most important concept of Kennedy’s analysis and he emphasizes it as a 
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physical reality and not just an “artifice introduced to achieve the desired prediction” 

(Kennedy, 1969).  However, Raudkivi (1990, p 98) states that evidence for this result is 

lacking.  Fredsoe (1982) gives the following relation for the phase shift 

 

2v
U

s

bε
δ =     , [2.27] 

 

where Ub is the “slip velocity” at the bed, which is given as Ub≈u*, ε  is the eddy viscosity 

taken as constant over the depth and given by the following  ε =0.077u*H, and vs is the 

fall velocity.   Kennedy and Odgaard (1991) acknowledge that because the method was 

developed using linearized (small wave amplitude) theory, Kennedy’s (1963) method is 

of limited value in analyzing fully developed bedforms.   

 

Coleman and Fenton (1996), without using a phase shift, concluded that equation 1.10, 

formerly used to delineate between antidunes and dune/ripple bedforms, is valid to use as 

a predictor of wavelength for flows where Fr<0.8.   

 

Fredsoe (1982) used perturbation methods to arrive at relations for the dune height and 

wavelength as functions of sediment transport, shear stress, and water depth.  In 

developing the method, a small perturbation was introduced on the dune and conditions 

were examined under which the dune was stable.  The bedform height is given by 
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where Φb is the dimensionless bedload sediment transport,  Φs is the dimensionless 

suspended sediment transport, θ is the bed shear stress near the top of the dune (which 

scales with the dimensionless grain shear stress τ’*).  The equations for these 

dimensionless quantities are  

 

3RgD

qb
b =Φ     , [2.29] 

 

3RgD

qs
s =Φ      , [2.30] 

 

RgDρ
τ

τ 0
*

′
=′     , and  [2.31] 

 

)( *τ ′=Φ fb     , [2.32] 

 

where qb is the bed load transport, qs is the suspended-sediment load, R is the submerged 

specific gravity, ρ is the water density, and D is the mean grain diameter.  The relation 

between Hd/H and the dimensionless shear stress is shown in figure 2.15.    At low 

dimensionless shear stress, one curve represents all grain sizes.  This one curve is 

indicative that only bedload is transporting sediment.  At the higher shear stresses, 

suspended sediment becomes in the geometry of the bedform. 
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 Hd/H 
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Figure 2.15.—Bed shear stress as a predictor of dune height as proposed by Fredsoe 
(1982) 

 
 

Fredsoe (1982) gives the following relation for the dune wavelength 
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where δ is the phase shift and is computed as in equation 2.27.  Figure 2.16 depicts the 

variation in Hd/λ with dimensionless shear stress.   

 
Hd/λ 

*τ ′
 

Figure 2.16.--- Bed shear stress as a predictor of dune steepness as proposed by Fredsoe 
(1982) 

 

Haque and Mahmood (1985) developed a non-dimensional graph of bedform shape from 

two-dimensional boundary value potential flow analysis.  Plots of data collected in canals 

and rivers in Pakistan are shown in figure 2.17.  
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Figure 2.17.---Comparison of theoretical and observed bedform shapes (from Haque and 
Mahmood, 1985) 

 

Kennedy and Odgaard (1991) proposed the following analytical relation  
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where f0 is the rigid-flat-bed Darcy-Weisbach friction factor, 
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f is the Darcy-Weisbach friction factor; Fr is the Froude number; A= 1.0; CD=1.0; α=5; 

and C1=0.25.  Equation 2.34a was derived by following the concept of relating energy 

slope (because of form drag) to head loss across an abrupt expansion in a conduit.   

 

Karim (1999), used a similar concept to that of Kennedy and Odgaard (1991), whereby 

energy loss because of form drag is related to the head loss across a sudden expansion in 

an open channel.  Karim presents the following equation for the geometry of ripples, 

dunes, and transition bedforms as 
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where Se is the energy slope.  Karim further recommends to solve for λ/H using the 

equation of Julien and Klaassen (1995) (  λ/H=6.25) for dunes and Yalin’s (1964) 

relation for ripples (λ=1000 D) (equation 2.15). 

 

2.2. Flow Over Bedforms 
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The velocity in a shear flow is non-uniform because of the presence of the boundary and 

the resulting resistance to flow not only along the boundary but between the fluid 

particles.  Although it was realized as early as 4th century B.C. by Aristotle that flow 

resistance was important to the bulk flow (Rouse and Ince, 1963), it was not until Prandtl 

(1904) presented his paper on boundary layer theory that fluid mechanics was 

incorporated into flow-resistance theory and enabled a characterization of the profile of 

the velocity distribution in the vertical (Yen, 1992).  Alluvial channels add a layer of 

complexity to any investigation into the flow field because of the capacity of the 

boundary geometry to change with flow condition.  In laboratory experimental 

observations, it has been noted that in flow over a train of bedforms, a definitive 

momentum defect region is observed (Nelson and others, 1993;  Bennett and Best, 1995).  

The region is associated with flow separation and wake formation downstream of the 

bedform lee face and as the wake is advected downstream, the effect of the moment 

defect is diffused outward, causing the region to grow in depth.   A conceptual drawing 

of the flow character in the presence of bedforms is given in figure 1.1.  The flow 

separates at the crest of the bedform and reattaches at some point downstream on the next 

bedform. This flow over the bedforms creates an adverse pressure gradient 

( 01| 02

2

>=
∂
∂

= dx
dp

z
u

z µ
) that causes a smaller velocity gradient and, thus, a smaller velocity 

near the bed.  Results from laboratory investigations of Shen and others (1990) that 

demonstrate this adverse pressure gradient are shown in figure 2.18.  The reduction in 

velocity at the bed in the presence of these adverse pressure gradients is well 
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demonstrated on the stoss side of the bedform in figure 2.19 reproduced from Nelson and 

others (1993). 

 

 

25.0 U

hz
ρ

γ∆

Longitudinal Distance (m) 
 

Figure 2.18.—Non-dimensional pressure distribution in flow over a bedform (from Shen 
and others, 1990) 

 
 

For alluvial channels with bedforms, the flow resistance often is partitioned into form 

resistance and grain resistance.  This partitioning is important to do when considering 

sediment transport, as the grain resistance is the only component that affects the motion 

of the sediment grains (Garcia, 1999, p. 6.47).   
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 A 

B 

 

Figure 2.19.—Observations of velocity distribution along a bedform plotted both in A) 
linear and B) log space by Nelson and others (1993) 

 

For a typical shear flow over a flat-rough bed, the velocity profile (figure 2.20) typically 

is approximated with one logarithmic equation for the entire depth of the flow (although 

it is acknowledged that this is in violation of the assumptions inherent in the log law of 

the wall).  The Reynolds stresses typically decrease monotonically away from the 

boundary, reaching zero near the water surface in equilibrium conditions.  With bedforms 

present, the velocity and Reynolds stress profiles (figures 2.19 and 2.21) have been 

shown experimentally to be different from those for a plane bed  (Bennett and Best, 

1995; Nezu and Nakagawa;1993).  The velocity profiles for these experiments were 

logarithmic in nature; however, the slopes vary in at least two separate distinct layers.  

The separation point between the layers corresponds to a maximum in the Reynolds 

stress, where the Reynolds stress increases from the boundary to the location of the 
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maximum shear stress then decreases toward the water surface.  Fedele and Garcia 

(2001) refer to this as the equilibrium or reference layer (εe).   

 

U , ft/s 

z /H  

c m = 0  

c m = 15 .8  

 

cm=the sediment discharge concentration of the flow, which when 
multiplied by the flow rate, will give the total concentration of 
the flow 

 Figure 2.20.-Velocity profiles in a typical shear flow (Vanoni, 1975) 
 
 

 
 

 

 
Figure 2.21.--- Observations of Reynold stress distribution along a bedform (Nelson and 

others, 1993)  
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2.2.1  Flow Resistance and Shear Partioning Models 
 

 Flow resistance research in rigid conduit flow began in earnest with the work of Bazin 

(1865) and Darcy (1857), with major contributions by Nikuradse (1933) for pipe flow 

and Moody (1944).   Blasius (1913), a student of Prandtl’s, proposed that the resistance 

coefficient f was related to a quantity that is now known as the Reynold’s number, 

Re=URh/ν  (Carter and others, 1963), where for flows of 700 <Re<30,000 the friction 

factor is expressed as: 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 25.0Re

224.0f        . [2.36] 

 

According to Carter and others (1963), Hopf (1923) and Fromm(1923)  published the 

first papers on the measurement of roughness coefficients that included modern fluid-

mechanics concepts.   Hopf showed that f was a function of Re, relative roughness, and 

cross-sectional shape.    

 
The works of Prandtl (1925) and Von Karman (1931) have led to the introduction of an 

additional formula for f for smooth pipe flow as a function of Re. An excellent discussion 

of this derivation and its utilization of Boussinesq’s (1877) work is found in Tracy and 

Lester (1961, p. 2-5).  The equation, known as the Prandtl-Von Karman resistance 

formula for smooth flow, presented here is 

 

08.1)Relog(03.21
−= f

f
  , [2.37] 
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where Re for the half section of an infinitely wide, smooth conduit is 
ν

URh4
.   

 
Nikuradse (1933) presented his classical work in which he had meticulously glued sand 

particles of uniform size to the inside of pipes and determined the f through the partly 

rough flow region.  Since this work, boundary roughness for impervious rigid walls is 

often expressed as an equivalent sand grain size, ks.    Colebrook and White (1937) 

investigated the same partly rough flow region with non-uniform roughness elements.  

Colebrook (1938) introduced the familiar Colebrook-White equation as 
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52.2

83.14
log21      . [2.38] 

 
The well known Moody diagram is only for pipe flow.  As Yen (1992) points out, no 

valid Moody type diagram has been developed for open-channel flow.   Rouse (1943) 

presented results that plotted 
f

vs
f

Re.1 .  Moody suggested that Rouse use vs Re 

as the primary scales (Yen, 1992).  When Rouse refused to do this, Moody (1944) 

presented a plot, known as the Moody diagram, which is used widely today. This diagram 

is used iteratively by computing the relative roughness (ε

f

s/D), assuming a velocity, 

calculating the Re from this velocity, and determining the value of from the diagram. εf s 

 is the equivalent sand diameter  (analogous to Nikuradse’s ks) and D is the pipe 

diameter.  The value of the resistance coefficient is plugged into the Darcy-Weisbach 

equation (equation 1.2) and a velocity is computed.  From this velocity, Re is computed 

and checked against the Re from the assumed velocity.  This process is repeated until 
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successive Re’s match.  At large Reynolds numbers (1x104 to 1x107, depending on 

relative roughness), the resistance coefficient becomes independent of Re  and only a 

function of the relative roughness.  This property of the Moody diagram is consistent 

with the equations presented earlier (equations 2.36, 2.37, 2.38). 

 
Yen (1992) presents a basic preliminary “Moody-type” diagram for steady-uniform open 

channel flow.  His plot only deals with the areas of the diagram where the flow is either 

in the laminar region or the fully turbulent high-Reynolds number region.  Brownlie 

(1981) also presents a “Moody-type” graph based on the data of Nikuradse and purports 

its use for open-channel flows. 

 

In determining the grain-resistance coefficients, many investigators have tried to borrow 

from Nikuradse’s equivalent grain roughness concepts and relate the resistance to some 

measure of ks.  Rouse (1946) suggested that Manning’s n, if it is indeed independent of 

RRe , should be related to some measure of wall roughness as 

 

6
1

sn kCn =     , [2.39] 

 
where Cn is a constant of proportionality.  Various investigators have proposed various 

relations of bed material size to ks.  Yen (1992) presented a table (table 2.3 below) that 

summarizes the various equations that investigators have proposed to determine the value 

of ks; these equations being of the form 

 
xss dk α=     , [2.40] 
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where αs is a proportionality constant, and dx is the reference sediment size.    

 
 
Investigator dx αs 
 
Ackers and White (1973) d35 1.23 
Strickler (1923) d50 3.3 
Keulegan (1938) d50 1 
Meyer-Peter and Muller (1948) d50 1 
Thompson and Campbell (1979) d50 2.0 
Hammond and others (1984) d50 6.6 
Einstein and Barbarossa (1952) d65 1 
Irmay(1949) d65 1.5 
Engelund and Hansen (1967) d65 2.0 
Lane and Carlson (1953) d75 3.2 
Gladki(1979) d80 2.5 
Leopold and others (1964) d84 3.9 
Limerinos(1970) d84 2.8 
Mahmood(1971) d84 5.1 
Hey(1979), Bray(1979) d84 3.5 
Ikeda(1983) d84 1.5 
Colosimo and others (1986) d84 3-6 
Whiting and Dietrich (1990) d84 2.95 
Simons and Richardson (1966) d85 1 
Kamphuis (1974) d90 2.0 
van Rijn (1982A) d90 3.0 
 
 

Table 2.3. Ratio of Nikuradse equivalent grain roughness size and sediment size for 
open- channel flows  (from Yen, 1992, p. 120) 

 
  

When considering flat beds in channels with sediment along the bottom, it is worth 

noting that Karim and Kennedy (1990) found that the friction factors of flows over 

mobile flat beds were about 20 percent higher than those for flows with rigid beds with 

the same equivalent roughness length.   This follows the same reasoning that Smith and 

McLean (1977) adopted in assuming that the roughness length (ks) for sediment-

transporting channels is higher than for non-sediment transporting channels. They equate 
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the roughness length to the sum of the Nikuradse ks plus the height of the saltating 

bedload layer.  

 

As non-rigid channels, alluvial channels present new challenges when investigating the 

flow resistance because the flow forms the boundary but then the boundary, in turn, 

forms the flow.  Simons and Richardson (1966) state: 

 
“Resistance to flow in alluvial channels is complicated by the large 

number of variables.  It is further complicated by the interdependency, 

either real or apparent, of the variables.  In fact, some variables may be 

altered or even determined by the flow, and changes in flow conditions 

may change the role of a dependent variable into that of an independent 

one.  It is difficult, especially in field studies, to differentiate between 

independent and dependent variables.” 

 
 
 
Gilbert (1914) performed some of the earliest experiments on alluvial channels and found 

that the resistance coefficient varied with bedforms.  The changes in bedform geometry 

in river systems have been recognized as accounting for much of the variation in friction 

factors of natural alluvial streams (Julien and Klaassen, 1995).   In the presence of 

bedforms, Einstein (1950) introduced the most predominant approach to determining the 

separation of the shear stress because of the presence of bedforms (or flow resistance 

because 2
0

2 88
U

SR
U

gf h ρ
τ

==   . 
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Einstein assumed that the shear stress could be separated (partitioned) using linear 

superposition, where the total bed-shear stress is divided into that induced by the grain 

roughness and that induced by form resistance as  

 
000 τττ ′′+′=      , [2.41] 

 

which leads to  

 

fff ′′+′=   , [2.42] 

 

where τ0=total bed shear stress,  0τ ′= grain shear component of the total shear stress, 

0τ ′′ =form drag component of the total bed shear stress, f = total Darcy-Weisbach friction 

factor, f’ = grain shear friction factor, and f’’=form-drag friction factor. 

 

The grain shear friction factor is determined in many cases as the plane-bed friction 

factor, an approach which is influenced by the work of Nikuradse (1933).  The form-drag 

friction factor then could be determined in experiments as the difference between the 

total measured friction factor and the grain shear friction factor, although some 

investigators measured both components separately (Shen and others, 1990; Nelson and 

others, 1993) 

 
Many investigators have used this linear-superposition treatment to separate or partition 

the shear stress (or resistance coefficient) (e.g., Einstein and Barbarossa, 1952; Vanoni 
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and Brooks, 1957;  Shen, 1962;  Yalin, 1964;   Alam and others, 1966; Engelund, 1967;  

Engelund and Hansen, 1967;  Simons and Richardson, 1966;  Vanoni and Hwang, 1967;  

Lovera and Kennedy, 1969;  Alam and Kennedy, 1969;  Engelund and Fredsoe, 1982; 

van Rijn, 1982;  Nelson and Smith, 1989B; Fedele, 1998; and Fedele and Garcia (2001)).   

Several investigations have provided further equations to compute one or both sides of 

equation 2.42.  An example of this is the work of Vittal and others (1977).  In a 

laboratory investigation on fixed bedforms, they presented the following equations for 

the friction factors as 
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  for 0.007<f ’<0.025  , [2.43] 

 

λ
d

d
H

Cf 4=′′   for 0.11≤Hd/H≤0.3; and 0.05≤Hd/λ≤0.2  ,  [2.44] 

 

where 

 

Hd is the height of the bedform,  H is the average depth,  λ is the bedform wavelength, ks 

is the grain roughness length (set equal to the D65 of the bed material), Re is the Reynolds 

number of the flow (UH/ν), U is the mean velocity of the flow, ν is the kinematic 

viscosity of the fluid, and Cd is the drag coefficient.   

 
The shear-partitioning method of Einstein (1950) requires knowledge of the total 

boundary shear stress to carry out the computations necessary for computation of the 
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component stresses.  Einstein and Barbarossa (1952) developed a method using  

empirical data that allowed one to partition the shear stresses and, thus, resistance 

coefficients, without the knowledge of the total shear stress.  Starting with the 

assumption given in equation 2.41 and further assuming that the hydraulic radius and the 

area of the flow could be divided similarly by 

 
hhh RRR ′′+′=     , [2.45] 

 
AAA ′′+′=    , [2.46] 

  
then by use of Manning’s equation (equation 1.1) and Strickler’s empirical resistance 

coefficient equation gives 

 

3.29

6
sk

n =    . [2.47] 

 

Einstein and Barbarossa (1952) determined that the ratio of the mean velocity and grain 

roughness shear velocity is 

6
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where SRgu ′=′*   and ks =D65 .

 
In cases where the grain roughness does not produce a hydraulically rough surface (ratio 

of roughness diameter to theoretical thickness of the viscous sublayer (
ν6.11
*uks ′

) is less 
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than 5, a logarithmic formula was recommended with a correction factor taken from 

figure 2 in the Einstein and Barbarossa (1952) paper.   Einstein and Barbarossa (1952) 

also provide a graph (figure 3 in the their paper), derived from field data on the Missouri 

River Basin and California streams, that relates *u ′′  to ψ ′  (Einstein, 1942), where  

 

SR
D

h

s

′
−

=′
ρ
ρρ

ψ    . [2.49] 

 
This graphical relation has came to be known as the bar-resistance graph in the literature.  

From these relations, the total resistance coefficient can be obtained by following the 

steps below. 

1. Knowing the cross section properties, slope of channel, and bed 

sediment size, determine a value of Rh’ (use H’ for wide channels). 

2. Calculate *u ′  and ψ ′  from SRgu ′=′*  and equation 2.49. 

3. Determine U from equation 2.48 . 

4. Obtain 
*u

U
′′  from the figure in Einstein and Barbarossa (1952) 

(which depends on ψ ′ ) and calculate H’’ (or Rh”) from u*” . 

5. Calculate the value of H=H’+H’’ (or Rh=Rh’+Rh”) . 

6. For this value of H (or Rh), the total shear velocity u*
2

 is equal to 

.  Thus, the resistance coefficient is *
2

*
2

* uu ′′+′
U
uf *

8
=  . 

 

  65



The partition method of Engelund and Hansen (1967) is similar to that of Einstein and 

Barbarossa (1952) with the exception that they directly relate the dimensionless total 

shear stress, *τ ,to the dimensionless grain shear stress, *τ ′ , where 

RgDρ
τ

τ 0
* =  ,         

RgDρ
τ

τ 0
*

′
=′  , [2.50] 

 

ρ is the fluid density, R is the submerged specific gravity ( 65.1≅
−
ρ
ρρ s ), g is the 

acceleration of gravity, and D is the grain size. 

 

 

The Nelson-Smith partition (Smith and McLean, 1977; Wiberg and Nelson, 1992; Nelson 

and others, 1993) of the shear stress also use the linear superposition idea introduced by 

Einstein; however, they approach the problem from a fluid dynamics analysis of the drag 

introduced by the bedform.  Based on various experiments, the Nelson-Smith partition 

method introduces the form drag as 

 

2

2
1

rddf UHCBD ρ=  , [2.51] 

 

where B = channel width, Cd = drag coefficient, ranging from 0.21 (Smith and McLean, 

1977)  to 0.23 (Wiberg and Nelson, 1992) to 0.25 (Nelson and others, 1993), Hd is the 

bedform height, and Ur denotes the reference velocity that corresponds to the mean 

velocity between z=ks and z= Hd if the bedforms were not present. The form shear stress 
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can be computed from the form drag divided by the area of the bed over which the force 

is applied as 

 

2
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where λ is the bedform wavelength.   From an integration of the logarithmic velocity 

profile from z = ks to z = Hd, Ur is given by the following equation as 
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Combining these two equations and assuming partitioning of the shear stress according to 

that of Einstein (1950) yields 
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Assuming that the total shear stress can be computed from the force balance concepts for 

equilibrium flow as  

 

gHSρτ =0   .  [2.55] 
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Then, with knowledge of the geometry of the bedforms (Hd and λ), the drag coefficient, 

the grain roughness length, ks, and the grain shear stress , τ’0 , can be computed.  In turn, 

the form shear stress can then be computed.  The major drawback to using the Smith-

Nelson shear portioning method is the requirement to know the geometry of the 

bedforms, prior to applying the method. 

 

Nelson and others (1993, p. 3,944) suggest that the interaction of spatial acceleration of 

the flow over bedforms with the turbulence field is important in altering the form drag of 

bedforms.  This alteration will cause problems with their estimate of the resistance 

coefficient (Cd) at approximately 0.25; however, they contend that as long as the 

bedforms are two dimensional with heights of approximately 20% of the flow depth, Cd 

essentially will be constant.  When ripples are present, the drag coefficient will not be 

constant at around 0.25 (the bedform heights are less than 20% of the flow depth).   

 
 
 

2.2.2  Velocity Profile Characterization 
 
In understanding the velocity profile characterization, it is necessary to express the velocity 

profile relations, discuss the assumptions behind their derivations, and delineate in what parts of 

the flow are they applicable.  According to Yen (1992, p. 15), boundary layer theory provides for 

the velocity distribution in the vertical direction to be adequately described by two laws or 

regions of the flow field: 

 

 A) Law of the wall (also termed inner law and applies to the inner-flow region) 

 B) Velocity defect law (also termed outer law and applies to the outer-flow region) 
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For each region, multiple equations potentially satisfy the inner and outer-laws.  Whereas each of 

these laws applies to a region in the flow, it is acknowledged that these regions overlap, also 

providing for overlap in the application of the pertinent laws.     

 
 

2.2.2.1 Regions of Flow  

 
In  Yen’s (1992) classification of the regions of flow, there is an inner region and an outer region.  

Near the bed, the Reynolds stresses are negligible with the viscous stresses dominating and the 

local shear stress assumed to be constant and equal to the shear stress at the bed.  This thin region 

near the bed is often termed the laminar (or viscous) sublayer.  The viscous sublayer has a linear 

relation between the velocity and the distance from the bed for the velocity profile.  The depth of 

the viscous sublayer is defined as  

 

*u
Xv
νδ =     , [2.56] 

 
where X has been estimated by various investigators and ranges from 5 to 12.6 (Schlichting 

(1979, p. 604); Sabersky and others (1989, p. 257);Rouse (1959); Clauser (1956); Julien (1995)).  

The viscous sublayer only is present in flows that are termed hydraulically smooth or 

transitionally hydraulically smooth. The idea of a smooth or rough flow regime will be discussed 

in the next section. 

 

Outside of the viscous sublayer, the inner law layer extends upward and overlaps with the outer 

layer.  As Yen (1992) has defined, the inner region is where “ viscous effects dominate” and is not 

deep.  In this region, the velocity profile is logarithmic.  In many cases, the logarithmic velocity 

profile is assumed to extend well beyond the top of the inner region (many assume it extends to 

  69



the water surface), which is a direct violation of the assumptions made for its derivation (the 

derivation will be given in the next section).    

 

Yen (1992, p. 18) implies that the outer region extends down to a point near the boundary where  

 
*

30
u

z ν
=    . [2.57] 

In this outer region, the velocity profile can be shown to be logarithmic, although it has a 

different form with different scaling.    

 

A classification of the various regions of flow field, based on turbulent structure of the flow, is 

reported by Nezu and Nakagawa (1993, p. 19).  They divide the turbulent structure of the flow 

into three regions: 1) wall region, 2) intermediate region, and 3) free-surface region.  The wall 

region applies to the part of the flow where 15.00 <≤ Hz to 0.20, with velocities and lengths 

scaled in this region with u* and ν/u* , respectively.   The free-surface region lies in the range 

0.16.0 ≤≤ Hz , where the velocity scales with the maxium velocity, Um, and the length scales 

with the flow depth.  An intermediate region lies between the wall region and the free-surface 

region that is not strongly affected by either the wall or the free surface.  The velocity and length 

scales assigned to this region are  *u=ρ
τ  and H, respectively.  

  

2.2.2.2 Derivations of Turbulent Velocity Relations from Boundary Layer Theory 

 

Boussinesq (1877),  Prandtl (1925), and Von Karman (1931) did pioneering work in turbulent 

boundary layers to provide the framework for much of our theory today on the velocity 

distributions in a flow field.   Boussinesq was the first to advance the hypothesis that a coefficient 
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analogous to the viscosity in Stokes law for laminar flow was present to describe the stress 

induced by turbulence (Reynolds Stresses) and that the total shear stress could be written as  

 

dz
du

dz
du

ttv µµτττ +=+=  ,  where [2.58] 

dz
du

dz
duwu ttt ρνµρτ ==′′−=  , [2.59] 

τv is the viscous shear stress because of the molecular properties of the fluid, tτ is the shear stress 

from turbulence, µ is the dynamic viscosity, tµ  is the dynamic eddy viscosity, ρ is the density, νt 

is the kinematic eddy viscosity, and u’ and w’ are streamwise and vertical velocity fluctuations, 

respectively.  However, this alone does not help us solve for anything of substance.  Prandtl 

(1925) introduced his mixing length theory that postulated that layers of fluid maintain a constant 

momentum in the streamwise direction.  A lump of fluid is moved to an adjacent layer, by a 

distance l, and  maintains its  momentum, despite moving into a new layer.  Through derivation 

and assumptions (detailed in Schlichting, 1979, p 580), it is postulated that  

dz
dulvu ~~' ′    . [2.60] 

 

From equations 2.60 and 2.58, yields the following: 

 

dz
du

dz
dul

dz
du

tv
2ρµτττ +=+=   . [2.61] 
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Separating the du/dz terms (as opposed to just lumping them as a square term) allows for 

the sign of the turbulent shear stress to change with that of du/dz.  This formulation by 

Prandtl is equivalent to computing the eddy viscosity in Bousinesq’s relation as 

 

dz
dult

2ρµ =   . [2.62] 

 

Acknowledging that in turbulent flow away from the immediate vicinity of the boundary, 

the viscous stresses are negligible when compared to the turbulent stresses, the following 

derivation, attributable to Prandtl, results in: 

 

dz
du

dz
dult

2ρττ ==    . [2.63] 

 

However, the value for the mixing length remains undetermined.  Prandtl assumed that 

the mixing length scales with the wall distance (Schlicting, 1979, p 587) as 

 

zl κ=  . [2.64] 

 

Utilizing equation 2.64 and the assumption that the shear stress near the bed is equal to 

that at the bed (τ0) and remains constant (i.e. constant shear stress layer), equation 2.63 

becomes 
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dz
du

dz
duzu 222

*0 ρκρτ ==    . [2.65] 

 

Taking the square root of both sides and integrating results in 

Czuu += ln*

κ
  . [2.66] 

 

Equation 2.66 can be recognized as the universal velocity distribution equation (equation 

1.5) discussed in section 1.1. When the constant C is evaluated for u=0 at z=z0, then  

 

0
* ln z

u
C

κ
−=    . [2.67] 

 

Equation 2.66 now can be expressed as 

 

⎟⎟
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⎞
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⎝
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z
zuzzuu

κκ
   . [2.68] 

 

From the assumptions inherent in the development, equation 2.68, in the strictest sense, only is 

applicable near the boundary.  However, equation 2.68 has been applied to flow away from the 

boundary with fairly good results. 

 

From dimensional analysis arguments, z0 is proportional to the ratio ν/u*, which can be expressed 

as 
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*
0 u

z νβ=     . [2.69] 

 

Combining 2.68 and 2.69 allows the following equation that Schlichting  (1979, p. 589) 

terms the dimensionless, logarithmic, universal velocity-distribution law as 

 

βνκ
β

νκ
**

*

ln1)ln(ln1 zuzu
u
u

=−=    . [2.70] 

 

Von Karman’s constant , κ, is a universal constant of turbulent flow and equal to about 0.4.  

Some investigators (Vanoni, 1946; Einstein and Chien,1955) have reported that κ varied with  

sediment concentration, however, this variation has been shown (Coleman ,1981; Gelfenbaum 

and Smith, 1986) to be an artifact of these investigators misapplying the log-law far away from 

the boundary, which violates the assumptions of the original derivation.    The other constant, β, 

is dependent on the nature of the wall surface.   

 

Two types of boundary conditions (or flow regimes), with a transition zone between them, are 

known to exist in turbulent shear flows: hydraulically smooth flow and hydraulically rough flow.  

These flow regimes are characterized by the size of the grain roughness and the depth, δv,  of the 

potential viscous (or laminar) sublayer (Julien, 1995, p. 94).  The boundary is said to be 

hydraulically smooth if the grain roughness size (ks) is less than the viscous sublayer height (δv), 

and hydraulically rough if ks is larger than δv .   

 
 
For hydraulically smooth fully turbulent flow, experimentally it has been found that 
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5.5ln1
=− β

κ
  . [2.71]  

 
Equations 2.70 and 2.71 combined, make up one of the three equations that are known as the 

“law of the wall”(Schlichting, 1979, p. 605).  The three equations or curves making up the law of 

the wall are  

 

ν
*

*

zu
u
u
=                for the viscous sublayer  5* ≤

ν
zu    , [2.72] 

 
1Reichardt’s curve for the transition layer 5<

ν
*zu <70    , and [2.73] 

 

5.5ln1 *

*

+=
νκ
zu

u
u   for  fully turbulent flow with 

ν
*zu >70  . [2.74] 

 
 
 

Customarily, the law of the wall is always discussed in association with smooth boundaries as 

that is the regime where the experiments to validate this law were performed.    However, it also 

has been found that the log law is valid for rough boundaries (Schlichting, 1979, p. 618).  From 

experiments, the distance from the boundary has been scaled with the roughness height, ks.. 

Therefore, equation 2.66 now has the form 

 

)(ln1 *

* νκ
s

s

ku
B

k
z

u
u

+=     . [2.75] 

 

                                                           
1 (see Schlichting (1979, figure 20.4, p. 601) 
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The value of  B has been determined to vary with the roughness Reynolds number, 

)( *

ν
sku

, from the work of Nikuradse (Schlichting,1979, p. 620).  However, for a fully 

rough channel, B becomes a constant value of 8.5, which allows the following log-law 

equation for a fully rough flow as 

 

5.8ln1

*

+=
sk

z
u
u

κ
  . [2.76] 

 

Nezu and Nakagawa (1993) contend that these log-law type equations only are valid in 

the wall region (z/H<0.2), primarily because the farther away from the boundary, the 

more invalid the assumption of Prandtl’s derivation (constant stress assumption). This 

result is in contrast to the recommendations of Keulegan (1938) whose work in open-

channel flows found that the log law could be applied for the entire depth of flow.   

 

 

2.2.2.3 Velocity-Defect Law 

 

Velocity equations for the outer region exist that are independent of the boundary 

roughness (they are valid for either smooth or rough flow).  These equations are termed 

velocity-defect law equations and are derived by starting from the log law.  

 

Continuing with the work of Prantl (1925), assuming at z=H, u=Um, which are then 

entered as a boundary condition into equation 2.66  yielding 
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CH
u

U m += ln*

κ
   . [2.77] 

 

Subtracting equation 2.66 from 2.77 and placing in dimensionless form yields the well-

known velocity-defect law form of the velocity equation stated as 

 

H
z

u
uU m ln1

* κ
−=

−
  . [2.78] 

 

This form of the velocity profile equation has no dependence on the surface roughness, 

however, the form is dependent on the assumptions inherent in Prandtl’s derivation, 

namely 1) the mixing-length hypothesis, 2) the mixing length scaling with distance from 

the boundary, and 3) the constant value of shear stress (equal to the boundary shear 

stress).  The third assumption may be the most difficult to adhere to (although, mentioned 

previously, results have shown the assumption to be reasonable).  Equations that alleviate 

these assumptions, either by derivation under different assumptions or from additional 

terms in the equation, are discussed in the following paragraphs.   

 

Von Karman (1931) introduced a similarity rule that assumed that the turbulent 

fluctuations are similar at all points in the flow field and scale by time- and length-scale 

factors.  Using a empirical constant, κ, he arrived at the equation for the mixing length as 
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2
2

dz
ud

dz
du

l κ=    . [2.79] 

 

Substitution of equation 2.79 into equation 2.63 yields the expression for the turbulent 

shear stress as 
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t ρκτ =     . [2.80] 

 

 

Assuming that the shear stress is linear function of the depth of the channel yields 

 

H
y

t 0ττ =   . [2.81] 

 

Noting that y is the distance from the water surface and that Von Karman does not make 

the same assumption of Prandtl, that is that the shear stress is constant and equal to the 

bed shear stress, applying equation 2.80 to 2.81 yields 
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According to Schlichting (1979, p 586), by integrating twice and determining the 

constant of integration from the boundary condition u=Um at y=0,  we get the following 

non-dimensional velocity-defect equation 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡
−−=

−
H
y

H
y

u
yuU m 1ln1)(

* κ
   . [2.83] 

 

If instead of referencing τt to y, measured from the water surface, τt is referenced to z, 

measured from the boundary (as is customary in most applications), equation 2.83 

becomes 
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This gives a velocity equation for the outer region that is independent of the constant 

stress assumption of Prandtl.     

 

 

2.2.2.4  Wake Function  

 

The log law only accounts for the wall shear stress.  This is demonstrated by examining 

the boundary layer approximations in an order of magnitude analysis.  The momentum 

equation in the x direction can be simplified and written as 
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where S0 is the bed slope; p is the pressure; - wu ′′ , when multiplied by the density, ρ, is 

the Reynolds Stress (or turbulent stress) described in equation 2.63; and  
z
uw

x
uu

∂
∂

+
∂
∂ are 

the inertial terms.  In the development of the log-law, the inertial and pressure forces 

were, in most part, unaccounted for in the derivation of equation 2.76 (recalling that 

Prandtl used only the relation between the turbulent shear stress and the velocity 

gradient).  This non-accounting of the forces is evidenced further from observed data in 

the outer region of the flow, where deviations from the log law and the velocity defect 

law are noted.   Nezu and Nakagawa (1993), calling it the “log-wake law”, add a wake 

function to the standard log law (equation 2.74) as  
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where A is the constant for the typical logarithmic velocity profile (A=5.5 in smooth 

cases) and w(z/H) is a wake function from Coles (1956) in the form 
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where W0 is the Coles’ wake parameter, expressing the strength of the wake function.  

Equation 2.86 can be placed in velocity defect form as (where Um occurs at z=H) 
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Equation 2.86 also can be expressed through trigonometric substitution as 
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A procedure to compute Coles wake parameter is contained in Julien (1995, p. 103) and 

repeated here.  The wake term vanishes as z approaches 0; therefore, if the semi-log plot 

is fitted to the lower part of the velocity profile (figure 2.22), the line is projected to 

z/H=1,  and the wake term still is assumed to be zero, Coles Wake parameter can be 

calculated as  
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Nezu and Rodi (1986), in experiments on flat-bed, fully developed turbulent smooth-bed 

flows, found W0 to vary from 0 to 0.253, with a mean value of W0 ≈ 0.2.  Coleman 
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(1981) demonstrated that W0 increases with increasing sediment concentration, with W0 

ranging from 0.191 to 0.861.  Lyn (1993) found that for flow over artificial bedforms, W0 

ranged from –0.05 to 0.1, while a couple of Delft Laboratory experiments reported values 

of W0 = –0.3.  Lyn stated that these strongly negative values of W0 are the result of 

stronger favorable pressure gradients.  Lyn (1993) found favorable results in replicating 

the measured velocity profiles over the bedforms with the log-wake law.   

 

(Um-u)/u* 

z/H 

2W0/κ 

 

Figure 2.22-Evaluation of W0 from the velocity defect law (from Julien, 1995) 
 

2.2.2.5 Other Alternative Velocity Models 

 

Other empirical equations that described above have been proposed to describe the 

departure from the log law (Sarma and others, 1983; Coleman and Alonso, 1983; Song 

and Graf, 1996); however, these equations are not as widely accepted as the work by 

Coles (Nezu and Nakagawa, 1993).    

 

Alternative models to the log law for velocity distribution have been cited in the 

literature.  A generalized power law equation was presented by Chen (1991) as 
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where z’ is the physical location of the boundary layer at which u = 0, and a and m are a 

coefficient and an exponent, respectively.  Chen (1991), based on theoretical 

considerations, shows that for perfect agreement between the log law and the power law, 

the exponent m multiplied by the coefficient a should equal 0.92.  Gonzalez and others 

(1996) found that based on measurements in the Chicago Sanitary and Ship Canal, m was 

approximately 1/6 and a varied between 4.88 and 5.17.   

 

Swamee (1993) presented a new velocity relation that merges the linear law in the 

viscous sublayer (
ν

*

*

zu
u
u
= ), occurring only for smooth flow, and the log law, occurring 

for either smooth or rough flow, into one generalized equation for the inner region as 
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2.2.2.6 Added Complexity for Sand-Bed Rivers 

 

For the most part, the preceeding discussion essentially has been aimed at clear-water, 

plane-bed (or flat-bed) flows.  When a supply of sediment is available to a river system, 
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the river has the potential to both move the sediment into suspension and deform the 

boundary resulting in bedforms.    

 

Various investigators have noted an effect on the velocity profile when sediment was 

suspended in the flow.  Coleman (1981) noted that the amount of the flow represented by 

the log law shrank as the sediment concentration increased.  Muste and Patel (1997) 

found that the mean velocity, when compared to an equivalent flow, decreased 

throughout the flow depth as the suspended-sediment increased.  Coleman (1981) and 

Zippe and Graf (1983) emphasized that the log law only was valid strictly in the wall 

region and that deviations from the log law in these regions should not be accounted for 

by adjustment of κ and the constant of integration, but rather through application of the 

wake function.  Prior to this finding, experimental studies by many investigators (Vanoni, 

1946; Einstein and Chien, 1955; and Elata and Ippen, 1961) had led to the conclusion 

that κ decreases with increasing suspended-sediment concentration.  Coleman (1981) 

found κ to be independent of the sediment concentration and essentially remains 

constant.  Nezu and Rodi (1986) found κ to be a universal constant independent of 

Froude or Reynolds number and approximately equal to 0.4.     

 

With the added complexities involved when suspended sediment is present in the flow, 

some investigators have developed more complex models of velocity.  Tsai and Tsai 

(2000) developed a mathematical model to predict both velocity and suspended-sediment 

concentration distributions in open-channel flow, with two differential equations solved 

simultaneously to obtain a solution for the velocity profile.  Chiu and others (2000) 
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developed a new velocity model that is a logarithmic profile with a probabilistic 

component.   

 

Bedforms will occur along the boundary of the channel during certain flow conditions.  

In plane-bed flows, u* and ks are dependent entirely on the grain-roughness elements on 

the bed.  With the occurrence of bedforms, the velocity profile no longer can be 

characterized in the typical way using the grain-shear velocity and the Nikuradse type 

roughness height ks.   Even in the presence of bedforms, some investigators (e.g. Nordin 

and Dempster, 1963) continued to use the log law throughout the flow depth.  In this 

case, ks is no longer the Nikuradse equivalent grain roughness, but rather some dynamic 

combination of the grain and form roughness that will vary depending on where along the 

bedforms the velocity profile is taken or whether it is a spatially averaged velocity 

profile.  Fedele (1998) states that ks   is a “dynamic variable that accounts for the forces 

being diffused due to the presence of the wall”.     This composite roughness length often 

is designated as kc.  

 

 

Van Rijn (1984C) offers the following relation for the composite roughness length in the 

presence of bedforms as 
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Fedele (1998), utilizing a tactic first introduced by Perry and others (1969), uses 

Brownlie’s (1981) variation of the well-known expression obtained from the Nikuradse 

data (Schlichting, 1979, p. 621) as 
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 [2.94] 

to compute the composite roughness length, where f is the total friction factor obtained 

from the water-surface slope (1.74 is used in the Brownlie (1981) equation, whereas 1.68 

is used in the Schlichting (1979) equation).  Whereas equation 2.94 was developed for 

the equivalent grain roughness of sand particles and in this use it is being extrapolated to 

include both grain-roughness length and form-roughness length, the results that Fedele 

(1998) reports from actual field data are in good agreement with what Perry and others 

(1969) derived for a velocity-profile equation.   

 

For flows over bedforms, Nelson and Smith (1989B) suggest that because the shape of 

the velocity profile varies with position along a bedform, a single log velocity law as 

given by equation 2.76 is inadequate to describe the entire flow depth.  Three models that 

follow this rationale, Smith and McLean (1977), Nelson and Smith (1989A) and Fedele 

and Garcia (2001), will be presented in detail in chapter 4.  Each of these models 

determines the extent of the various regions of the flow profile along with computing the 

necessary parameters for each of these regions.  Nelson and Smith (1989B) note that near 

the boundary, a similarity region is present where the local velocity scales with the local 
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grain shear velocity.  In the flow away from the boundary, the local velocity scales with 

the overall total shear velocity (that is, the shear velocity averaged over a large part of the 

bedform field).   The different scales of superimposed bedforms determine the number of 

segments required.  The respective scaling parameters (u* and z0, note that z0 = ks/30), for 

each segment, are solved by matching successive layers and solving for all layers 

simultaneously.  Nelson and others (1993) present a similar concept to that of Smith and 

McLean (1977); however, they limit the number of segments to 2.     
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2.3 Previous Field Scale Investigations 
 

Experiments and investigations regarding flow and shear partitions over fully developed 

bedforms are numerous.  Fedele (1998) summarized the most relevant experiments into 

three types listed below. 

 

1. Fixed-bed experiments (Vittal and others, 1977; Engel and Lau, 1980; 

Ogink, 1989; Shen and others, 1990; Nelson and others, 1993; and 

Bennett and Best, 1995) 

2. Movable-bed experiments (Yalin, 1964; Guy and others, 1966; Vanoni 

and Hwang, 1967; Znamenskaya, 1963; Smith and McLean, 1977;  

Bridge and Best, 1988; and Kostaschuk and Villard, 1996) 

3. Mathematical-model tests (Engelund, 1967 and 1977; Wang, 1981; 

van Rijn, 1982B; Haque and Mahmood, 1985; Klaassen, 1979) 

 

 

As expressed earlier, there is an obvious lack of field-scale experiments of velocity 

measurements over bedforms, especially for large river systems, with the only notable 

detailed field experiments being those of Smith and McLean (1977) and Kostaschuk and 

Villard (1996).  Among the first to make measurements of velocities in a large alluvial 

river were Humphreys and Abbot (1861).  Humphreys and Abbot made various 

measurements of velocity along the lower Mississippi River.  Based on these 

measurements, they derived an universal flow-resistance equation for large rivers.   
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Various researchers were interested in simply collecting bathymetric data to examine the 

nature and extent of bedforms.   Carey and Keller (1957), observed and documented the 

bed configurations in the lower Mississippi River in Louisiana in one of the first 

applications of acoustic fathometers.  They present graphs of the bedforms along the 

“sailing line” from New Orleans up to the Old River Control Structure.  Bedforms of 

heights up to 9 m height in approximately 30 m of water were noted in the high-water 

survey conducted during April 1956.  Two bedform scales obviously are present, one 

bedform scale, which Carey and Keller (1957) term  “Super Sand Wave System” has 

length scales of almost 1.6 km in some cases.  Superimposed on these waves are large 

amplitude bedforms with shorter wavelengths on the order of 60 m (figure 2.23). Carey 

and Keller (1957) conclude that these large-scale irregularities of the bed vary 

systematically with discharge and are major sources of flow resistance.  Peters (1978, as 

reported in Julien and Klaasen, 1995) documents bathymetric data for the Zaire River.  

Julien (1992, as discussed in Julien and Klaassen,1995 ) compiled data from unpublished  

bathymetric surveys on various large rivers including Jamuna, Rhine, and Waal Rivers in 

The Netherlands, Parana River in Argentina, and the Mississippi River.  Julien and 

Klaassen (1995) present hydrographic survey results from the Meuse, Ijssel, Rhine, and 

Bergsche Maas Rivers in The Netherlands.  van Rijn (1984C) discusses bathymetry data 

collected on the Mississippi River by Lane and Eden (1940). 
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Figure 2.23.—Bathymetric data from the Mississippi River in Louisiana (Carey and 
Keller, 1957) 

 

The U.S. Geological Survey (USGS), during the late 1940’s into the 1950’s, undertook 

several field studies on rivers in the Rio Grande and Missouri River Basins.  These 

studies took on similar characteristics, with the following types of data collection:  point 

observations of velocity with a Price AA current meter, point observations of suspended-

sediment concentration using US P46 or modified US DH-48 point samplers, bed-

material samples collected and analyzed for size distribution, and salient hydraulic 

features, including water-surface slope and channel geometry, water temperature, and 

water discharge.   
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The Niobrara River near Cody, Nebraska (Colby and Hembree, 1955) was studied as part 

of a program of the Department of the Interior, Bureau of Reclamation for development 

of  the Missouri River Basin.   Data were collected from 1948 until 1953.  One of the 

more interesting features of this study was that in one small reach, all the sediment load 

being transported was in the form of suspended load.  Colby and Hembree (1955) used 

this site to investigate sediment transport relations, including making a modification to 

the Einstein (1950) procedure (also see Colby and Hubbell, 1961).  No effort regarding 

defining the bathymetry for identification of bedforms was reported.   

 

The Middle Loup River at Dunning, Nebraska study (Hubbell and Matejka, 1959) 

collected bedform data with an acoustic transducer.  Various other sediment and 

hydraulic information were collected during the study.  Of particular interest was the 

variation of bedforms with seasons for the same water discharge.  In winter, a general 

absence of bedforms was reported with uncommonly low Manning’s n values (Hubbell 

and others, 1956).  Bedform heights ranged from 0.15 to .3 m, with bedform wavelengths 

ranging from 3 to 5 m.   

 

In the Rio Grande Basin, a large effort (various studies) was undertaken by the USGS to 

investigate sediment transport, velocity profiles, and bedforms.  Several different 

episodes of data collection took place along the Rio Grande and tributaries with some of 

the data collected as late as 1969.  In the earlier phases (1952, 1958, 1961 data sets) of 

the studies (Nordin and Dempster, 1963; Culbertson and Dawdy, 1964), channel 
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bathymetry was not determined rigorously, however, general features of the bedforms 

were determined (Nordin, 1964).  In later data sets (1965-1969) (Culbertson and others, 

1972), detailed bathymetric data were collected with an acoustic transducer.  Bedform 

heights ranged from 0.3 to 0.91 m with bedform wavelengths ranging from 6 to 12.2 m.  

Velocity data were collected simultaneously in the later data sets, using a string of Price 

AA current meters. The bottom current meter varied from 0.06 to 0.12 m above the bed, 

in flow depths ranging from 0.73  to 1.4 m.    

 

Jordan (1965) documents various detailed observations of velocity, suspended-sediment 

concentration, and bed-material size distribution collected on the Mississippi River at St. 

Louis at the MacArthur Bridge (river mile 178.9).  Data were collected at various times 

from 1948 to 1960.  Using bathymetric data obtained from the U.S. Army Corps of 

Engineers,  Jordan reported bedform heights ranging from 0.6 to 2.5 m with wavelengths 

of on average 76 m in water depths of between 7.6 and 15 m.  Bedform wavelengths on 

the east side of the channel (Illinois side) were observed to be as large as 274 m.  Water 

temperatures also were measured during the study, and as observed in Colby and Scott 

(1965, p 14), Manning’s n did not vary with temperature, although it differed with 

discharge.  Additional data were collected from 1961 to 1963 and reported in Scott and 

Stephens (1966), including bathymetry data collected by acoustic Fathometer from river 

mile 174 to river mile 181.     

 

McQuivey (1973A, 1973B) used hot-film anemometry for turbulence, Price AA and Ott 

current meters for mean point velocity, and various samplers to collect point suspended-
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sediment concentrations on the following rivers: Atrisco Feeder Canal to the Rio Grande 

near Bernalillo, New Mexico; Rio Grande Conveyance Channel near Bernardo, New 

Mexico; the Missouri River near Omaha, Nebraska; and the Mississippi River near 

Vicksburg, Mississippi.  Data also were collected using various flumes and for the 

Columbia River estuary near Astoria, Oregon.  The velocity and turbulence data were 

collected for the entire vertical with the exception of near the bed (data collected for the 

top 90% of the flow depth)  Detailed bathymetry data were collected only on the 

Missouri River.  The overall purpose of the study was to correlate turbulence 

characteristics with hydraulic parameters and suspended-sediment data to gain insight 

into the flow mechanics. 

 

Smith and McLean (1977) conducted experiments whereby they collected measurements 

on the Columbia River of velocity and sediment-concentration profiles over bedforms as 

well as channel bathymetry and bed-material samples (for sediment-size analysis).  In 

these experiments, velocity was measured at four locations in the boundary layer (which 

this author is interpreting to mean the near-bed region as opposed to the entire flow 

depth) by use of 4-cm diameter mechanical current meters attached to the frame that 

Smith and McLean lowered to the near bed.   Other observations of velocity were made 

with a suspended device.  They moved the frame 3 meters downstream every hour.  

Although little detail is provided, the authors state that suspended-sediment samples were 

collected from a number of stations.  The discharge during the experiments ranged from 

8000 m3/sec (282,000 cfs) to 17,000 m3/sec (600,000 cfs) with velocities 1 meter from 

the bed ranging from 50 cm/sec (1.64 ft/sec) to 82 cm/sec (2.69 ft/sec).  In the early 
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experiments (1968 and 1969), the sediment was transported only as bedload, whereas 

sediment was transported as both suspended-sediment load and bedload during the 1971 

and 1972 experiments. In the experiments with only bedload, the bedforms were shorter 

and steeper than those for the experiments where suspended-sediment load also occurred.  

These elongated, more symmetrical bedforms induced unseparated flow in the lee of the 

bedform.  Velocity data were collected at time scales such that in examining velocity 

profiles, they averaged the velocity data over 30 minutes at multiple locations in the 

vertical and then averaged in the longitudinal direction (along the bedform).  They also 

normalized the velocity data with the velocity measured 1 meter above the bed. (as 

opposed to normalizing with the shear velocity).  Depths ranged from 13.4 to 16.6 m, 

with bedforms ranging from 67 to 96 m in length and from 1.34 to 3.21 m in height.   

 

Shen and others (1978) reported on data collected on the Missouri River near Omaha, 

Nebraska at specific times during 1966, 1967, 1968, 1969, and 1975.  Data collected 

were similar to those of Jordan (1965) and Scott and Stephens (1966), using very similar 

instrumentation and spatial sampling.  Part of the motivation of the Shen and others 

(1978) study was to examine the effects of water temperature on bedforms (and, thus, 

stage) on the Missouri River.  Water temperature was shown to be a definite factor on 

bedform evolution.  For low water temperatures, the bed becomes planar. Shen and 

others (1978) conclude that the Einstein and Barbarossa (1952) bar-resistance curve 

agrees reasonably well with observed data on the Missouri River, but does not agree well 

with data from larger alluvial rivers, such as the Mississippi and Atchafalaya.  This 

conclusion disagrees with that of Jordan (1965), who demonstrated that the bar-resistance 
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curve agreed well with the Mississippi River at St. Louis data, except at small values of 

ψ’, where  
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Kostaschuk and Villard (1996) collected flow and sediment data over asymmetric and 

symmetric bedforms in the Fraser River estuary near Steveston, Canada.  Data were 

collected between May and July 1989 at 4 - 5 verticals along the bedforms.  They found 

no lee-side flow separation for flows over the bedforms; however, this finding may be 

either  the result of inadequate density of flow data or the elongated nature of the 

bedforms.  A Marsh McBirney™  527 current meter and pump sampler were secured 

above a 70 kg lead-sounding weight (fish) to collect the necessary velocity and sediment 

data for this study.   
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